Estimation of Human Risk using the ISC3 Model

Todd M. Martin and Douglas M. Young EPA/NRMRL/STD/SAB

Overview

➤ Goal:

- ❖To determine the potential human risk from chemical emissions to air in a systematic, site-specific fashion
- > A variety of models are used
 - air dispersion, multimedia, exposure, and risk
- >A variety of site-specific data is used
 - meteorological, elevation, population, land use, toxicity, and emission
- > Model can be used to estimate risk from low level long term exposure from releases from chemical plants or from high exposure due to an accident or terrorist activity
- The software may be used by many offices in the EPA (i.e. NHSRC, OECA, or OPPT) to perform human risk assessments depending on specific needs.

Air Dispersion Calculations

- ➤ The ISC3 (Industrial Source Complex) air dispersion model is used to calculate the air concentration distribution of a pollutant surrounding a release source
- ➤ The air concentration distribution can be used to determine the area of concern (the area above a certain cutoff concentration)
 - ❖Cutoff concentration can be set at the IRIS RfC
- ➤ The ISC3 model can provide several intermediate results
 - ❖The radius of concern (the maximum radius that is above the cutoff concentration)
 - The total population that is exposed to a concentration greater than the cutoff concentration
 - ❖The total population within the area of

Multimedia Model **Calculations**

- A Fugacity model (Mackay et al., 1992) was used to estimate the pollutant concentration in the air, water, soil, and sediment.
 - . Level III model is a steady state, nonequilibrium model that includes degradation, advection, and intermedia transfer.
- The dimensions for the multimedia compartments are determined from the results of the air dispersion calculations

Exposure Model Calculations

- Exposure to the pollutant from a variety of pathways is estimated
- ➤ Pathways used:
 - Inhalation of air
 - Ingestion of water, produce, meat, milk, eggs, fish and soil
- Existence of individual pathways can be determined from land use data
 - Example: if the land use code for row crops appeared in the affected area, exposure from produce would be a possible concern
- Model accounts for the fraction of the food sources that are obtained locally

Risk Model Calculations

- Risk is determined from the dose rates (from the exposure model) and the chemical's toxicity values
- The risk of lifetime harm from cancer and non-cancer effects can be determined

$$\begin{split} HTP(cancer) &= I_{lngestion} \times SF_{ingestion} + I_{inhalation} \times SF_{inhalation} \\ HTP(noncancer) &= \frac{I_{lngestion}}{RfD} + \frac{C_{Air}}{RfC} \end{split}$$

The risks can be multiplied by the total affected population to get a more site-specific indication of risk (THTP)

Example Case Study

GENERAL ELECTRIC CO. (Ottawa, IL) emitted 285,000 lbs of acyrlonitrile (AN) in 1999

►RfC AN=0.002 mg/m³ (used RfC/10 for C_{cutoff})

Dispersion Results:

Dispersion Results, cont.

Parameter	Value
Radius of concern	14550 m
Population inside the radius of concern	34625
Population over the cutoff concentration	5592

> A significant population is exposed to at least 1/10 the RfC concentration

Multimedia Results

Exposure medium	Concentration
Air	1.14E-04 mg/m ³
Surface Water	1.35E-03 mg/m ³
Ground Water	1.78E-07 mg/m ³
Fish	1.78E-07 mg/kg fish
Soil	1.53E-05 mg/kg soil

Acrylonitrile partitions primarily to the air compartment

Exposure Results

Pathway	Dose Rate mg/kg-day
Inhalation	3.25E-05
Ingestion	
Water	1.61E-07
Produce	1.13E-08
Meat	1.33E-12
Milk	8.29E-13
Eggs	2.02E-14
Fish	3.62E-11
Soil	7.67E-14
Total	1.72E-07

➤ The majority of the exposure comes from the inhalation

Risk Results

Score	Value	
HTP (noncancer)	5.70E-02*	
HTP (cancer)	7.84E-06	
THTP (noncancer)	318	
THTP (cancer)	0.0438	

The HTP is less than one which would indicate that there isn't a significant chance of harm from

*The exposure from ingestion was not used in the calculation of risk since the RfD was not available